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ABSTRACT

Genetic variability among breeding lines is essential for effective rice improvement. The present study
evaluated agronomic trait variability among 114 rice genotypes, including five national and global
checks, using multivariate statistical analysis. The experiment was conducted during the kharif season of
2021-22 under an alpha lattice design with three replications, and thirteen yield and yield-related traits
were recorded. Principal component analysis revealed that the first six principal components with
eigenvalues greater than one explained 69.56% of the total variation among the genotypes. Traits such as
number of spikelets per panicle, grain yield per plant, biological yield, harvest index, panicle length and
number of grains per panicle contributed substantially to genetic variation. Correlation analysis showed
positive associations of grain yield with biological yield, harvest index and number of grains per panicle.
Cluster analysis based on Euclidean distance grouped the breeding lines into distinct clusters, indicating
the presence of considerable genetic divergence. The study highlights the usefulness of multivariate
approaches in identifying diverse and promising rice breeding lines for yield improvement.
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Rice (Oryza sativa L.) is a primary staple food for

Introduction al., 2021). The presence of sufficient variability allows

breeders to select superior genotypes and design

an enormous percentage of the global population
(Sapna et al., 2024). The continuing rise in population
has put significant pressure on rice-producing
processes. At the same time, cultivable land is
shrinking while climatic variability is expanding
(Sabar et al., 2024). These concerns urge the
establishment of high-yielding and stable rice cultivars
with superior agronomic performance (Haggag et al.,
2015).

The availability of genetic variety in breeding
material is a key factor in crop development (Swarup et

effective hybridization programs (Sabar et al., 2024).
Rice yield is a complex trait and is influenced by
several agronomic characters (Luzikihupi et al., 1998).
Traits such as plant height, number of tillers, panicle
length, number of grains per panicle, and grain weight
collectively determine yield potential. Therefore, the
evaluation of agronomic traits is essential for
identifying promising breeding lines for further
improvement (Shrestha et al., 2021).

A crucial component of every successful breeding
effort is the selection of genetically diverse and
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productive parental lines. In segregating generations,
genotypes with a high degree of genetic divergence are
more likely to provide better recombinants (Bose et al.,
2005). Therefore, it is crucial to recognize the degree
and pattern of diversity among breeding lines. The
combined impact of several factors on genetic diversity
cannot be explained by traditional univariate statistical
approaches, which only offer information on individual
traits.

Multivariate statistical techniques offer an
effective approach to analyze complex datasets
involving several correlated traits simultaneously
(Word et al., 1987). Principal component analysis
(PCA) is a widely used multivariate technique for
reducing data dimensionality (Salem et al., 2019). It
helps identify traits that contribute most to total
variation among genotypes (Hasan et al., 2021).
Cluster analysis complements PCA by grouping
genotypes based on their similarity and divergence
(Evgenidis et al., 2011; Gewers et al., 2021). The
combined use of these methods enables effective
characterization of genetic diversity and supports
informed parental selection in breeding programs
(Azam et al., 2023).

The present study aimed to evaluate agronomic
trait variability among 114 rice breeding lines using
PCA and cluster analysis. The objectives were to
identify key traits contributing to genetic variation and
to select genetically diverse and high-performing
genotypes for future rice improvement programs.

MATERIALS AND METHODS
Experimental site and plant material

The study was conducted during the kharif season
of 2021-22 at the Crop Research Station, Masodha,
Acharya Narendra Deva University of Agriculture and
Technology, Kumarganj, Ayodhya (U.P.), India,
involving 114 rice breeding lines, including five global
and national checks (IRR154, IR-64, BPT-5204, IRRI-
148, and IRRI-119).

Experimental Design & Data Recording

The experiment was conducted in an Alpha
Lattice design (ALD) with three replications (Kashif et
al., 2010). Each genotype was grown in a single plot
under uniform field conditions. Yield and yield-related
traits were recorded at crop maturity. These included
number of spikelets per panicle (NSP), number of
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grains per panicle (NGP), spikelet fertility (%) (SF),
biological yield per plant (g) (BYP), harvest index (%)
(HI), 1000-grain weight (g) (TW), and grain yield per
plant (g) (GYP). Mean values were calculated for each
genotype before statistical analysis.

Statistical Analysis

The pooled mean data were
multivariate statistical analysis. All
standardized to minimize scale effects.

subjected to
traits were

Principal component analysis (PCA) was performed
to identify major traits contributing to total variation
among the rice breeding lines. Principal components
(PCs) with eigenvalues greater than one were
considered significant.

Cluster analysis was carried out using Euclidean
distance to assess genetic divergence among
genotypes. Hierarchical clustering was performed
using the Neighbour-Joining (NJ) method. A
dendrogram was constructed to depict the grouping
pattern of the rice breeding lines using PAST v5.3
software (Hammer et al., 2001).

All statistical analyses were performed using the
R statistical software.

Result and Discussion

Phenotypic variability in 13 yield-related traits
across 114 breeding lines

The boxplot depicts the distribution of 13 agro-
morphological and yield-related traits across 114 rice
breeding lines, revealing significant phenotypic
variability for all the traits studied (Figure 1). Wide
interquartile ranges and the presence of extreme values
for key yield-attributing traits such as number of NSP,
NGP, BYP, HI, TW and GYP indicated the existence
of broad genetic diversity within the 114 lines. Traits
directly contributing to yield, particularly GYP and
BYP, showed distinct dispersion, suggesting
differential assimilate production and partitioning
efficiency among genotypes. Moderate variability was
also observed for phenological traits such as Days to
flowering (DTF), spikelet number (SV), Plant height
(PH), Panicle length (PL) and flag leaf area (FLA),
reflecting differences in growth duration. Such wide
variability is desirable in breeding populations as it
enhances the scope for effective selection of superior
genotypes and trait recombination for crop yield
improvement.
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Fig. 1: Boxplot depicting the distribution of 13 yield related traits across 114 breeding lines.

Correlation among yield and yield-related traits

Pearson correlation analysis among yield and
yield-related attributes revealed several significant
associations  highlighting  the interrelationships
governing grain yield in rice (Figure 2). GYP showed
positive correlations with BYP, HI, NGP and PL
indicating that genotypes with higher biomass
production and efficient assimilate partitioning tended
to exhibit superior yield performance. Positive
associations between NSP and NGP further emphasize
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the importance of sink size in determining final yield.
In contrast, SF showed a negative association with
certain sink-related traits suggesting possible relation
between spikelet number and fertility under the given
environmental  conditions.  These  relationships
collectively indicate that selection for grain yield
should be based on a combination of traits such as
biomass accumulation, panicle architecture and grain
filling efficiency rather than on a single trait.
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Fig. 2: Pearson Correlation coefficient among the yield and yield related attributes.

breeding lines (Edukondalu et al., 2024). The first six
d PCs had eigenvalues greater than one and together
explained 69.56% of the total variation, indicating that

Principal component analysis

PCA reduces the dimensionality of the dataset an
identifies major sources of variation among the
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these components captured most of the information
present in the original variables. PC1 accounted for
15.74% of the total variance, followed by PC2
(14.15%), PC3 (11.83%), PC4 (11.21%), PC5 (8.62%)
and PC6 (8%) (Table 1). The scree plot showed a
gradual decline in eigenvalues after PC6, confirming
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the adequacy of the first few PCs in representing
overall variability (Figure 3). The significant variance
explained by the initial components reflects the
polygenic nature of yield and its associated traits and
justifies the use of PCA for effective discrimination
among genotypes.

Table 1: Eigenvalue, variance explained and cumulative variance for 13 PCs.

PC Eigenvalue Variance_Explained Cumulative_Variance
PC1 2.045871 0.15737 0.15737
PC2 1.838833 0.14145 0.29882
PC3 1.53786 0.1183 0.41712
PC4 1.457815 0.11214 0.52926
PC5 1.121454 0.08627 0.61553
PC6 1.040695 0.08005 0.69558
PC7 0.987848 0.07599 0.77157
PC8 0.931919 0.07169 0.84325
PC9 0.82471 0.06344 0.90669
PCI10 0.652121 0.05016 0.95686
PCI11 0.395497 0.03042 0.98728
PCI12 0.146686 0.01128 0.99856
PC13 0.01869 0.00144 1
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Fig. 3: Scree plot showing the percentage of variance.

The loading matrix provided insights into the
contribution of individual traits to each principal
component. PC1 was predominantly influenced by
NSP (positive loading) and SF (negative loading)
indicating that variation in spikelet production and
fertility played a major role in differentiating
genotypes along this axis (Table 2). PC2 was strongly

associated with PH, PL, and GYP suggesting that plant
architecture and yield performance together
contributed to variability captured by this component.
PC3 showed high positive loadings for HI, TW and
GYP emphasizing the importance of assimilate
partitioning and grain weight in yield determination.
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PC4 was linked to BYP and GYP reflecting differences
in total biomass production.

The loading plot illustrating the contributions of
variables to the first two PCs further confirmed that
yield and yield-related traits such as GYP, BYP, NSP,
NGP and PL were the major contributors of genetic
divergence (Figure 4). Traits positioned far from the
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origin (HI, GYP, PL, PH, BYP, NSP, SV and SF)
contributed more strongly to variability, whereas
closely clustered (FLA, TW, Productive tillers per
plant (PTP), DTF and NGP) traits exhibited correlated
behaviour. This distribution highlights the relevance of
these key traits in distinguishing among rice breeding
lines.

Table 2: Loading scores for 13 yield and yield-related traits.

Traits | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PCY9 | PC10 | PC11 | PC12 | PC13
DTF | 0.04 | 0.08 | -0.25 | -0.12 | 0.68 | -0.09 | -0.15 | -0.10 | -0.51 | 0.40 | -0.01 | 0.03 0.03
SV 0.31 | -0.21 | -0.07 | 0.02 | -0.04 | 0.34 | 0.48 | 0.37 | 0.14 | 0.57 | 0.14 | -0.01 0.01
PH |-022]| 041 |-030|-0.34|-0.04 | 0.16 | 0.17 | 0.11 | 0.16 | 0.04 | -0.69 | -0.03 -0.03
FLA | -0.12|-0.10| 0.14 | 0.15 | 0.35 | -0.51 | 0.36 | 0.57 | 0.00 | -0.28 | -0.13 | 0.09 -0.02
PTP |-0.03 | 0.16 | -0.13 | 0.02 | -0.58 | -0.23 | -0.27 | 0.46 | -0.50 | 0.19 | 0.03 | 0.03 0.02
PL |-022| 048 |-0.22 |-0.22 | 0.11 | 0.20 | 0.14 | 0.20 | 0.04 | -0.26 | 0.67 | -0.05 0.01
NSP | 057 | 0.22 | 0.21 | -0.20 | 0.03 | -0.11 | 0.01 | 0.06 | -0.09 | -0.15 | -0.06 | -0.70 | -0.04
NGP | 0.06 |-0.02 | 0.23 | -0.04 | 0.26 | 0.33 | -0.65 | 0.49 | 0.29 | -0.01 | -0.07 | 0.09 0.00
SF | -0.55-0.29 | -0.18 | 0.21 | 0.04 | 0.02 | -0.10 | 0.07 | 0.08 | 0.15 | 0.03 | -0.70 | -0.04
BYP | 0.20 | 0.31 | -0.26 | 0.65 | 0.06 | 0.05 | -0.05 | -0.02 | 0.07 | -0.02 | -0.05 | 0.02 -0.60
HI |-030] 0.19 | 0.61 | -0.23 | -0.02 | -0.11 | 0.06 | -0.07 | 0.00 | 0.36 | 0.08 | 0.02 -0.55
TW | -0.14 | -0.04 | 0.31 | 0.20 | 0.03 | 0.60 | 0.20 | 0.05 | -0.58 | -0.28 | -0.17 | -0.03 0.00
GYP | -0.10 | 0.50 | 0.31 | 0.44 | 0.04 | -0.06 | 0.04 | -0.07 | 0.13 | 0.28 | -0.03 | -0.05 0.58
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Fig. 4 : Loading plot illustrating the variables contributions to the first two PCs.
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The biplot depicting the distribution of 114 rice
breeding lines along the first two principal components
revealed clear dispersion of genotypes across the
multivariate space (Figure 5). This wide distribution
reflects substantial genetic divergence among the
breeding lines. Several genotypes were positioned in
directions associated with favourable yield-attributing
traits, indicating their potential as superior performers.
Genotypes located near the vectors of GYP, BYP, HI
and NGP can be considered promising candidates for
yield improvement, while those occupying extreme

Dim2 (14.1%)

777777777777777777777777777777777

o
Dim1 (15.7%)
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positions in opposite quadrants represent genetically
diverse lines suitable for use as parents in hybridization
programs. The clear separation among genotypes in the
biplot validates the effectiveness of PCA in capturing
underlying variability and proves to be effective in
simplifying complex multivariate datasets and
revealing key relationships and variations among traits.
These insights are particularly significant for rice
breeding as they enhance the understanding of trait
interactions and facilitate the efficient identification
and selection of superior genotypes.
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Fig. 5: Biplot depicting the distribution of 114 breeding line in the first two PCs.

NJ method-based cluster analysis of 114 breeding
lines

Hierarchical cluster analysis based on Euclidean
distance using phenotypic trait data grouped the 114
rice breeding lines into distinct and divergent clusters
(Figure 6). The dendrogram revealed wide genetic
diversity and differential combinations of yield and
yield-related traits. The checks were distributed across
different clusters indicating that they represent diverse
genetic backgrounds. BPT 5204 and IRRI 154 grouped
with moderate-yielding, tall to medium-tall genotypes

with relatively lower grain yield, whereas IRRI 148,
IRRI 119 and IR64 clustered with high-biomass and
high-yielding genotypes. High-yielding genotypes such
as IR17A3003, IR18A1027, IR18A1197, IR18A1156,
IR17A3050 and IR18 A1135 were positioned in distinct
sub-clusters with BPT 5204 and IRRI 154. The long
branch lengths separating these superior genotypes
from low-yielding checks indicated significant genetic
divergence, suggesting that they possess unique and
complementary allelic combinations for yield traits.
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Fig. 6: Cluster analysis of 114 rice breeding lines based on Euclidean distance and NJ method.

Conclusion

The present study revealed substantial phenotypic
variability among the 114 rice breeding lines including
5 checks for yield and yield-related traits, indicating
the availability of useful genetic diversity for selection.
Principal component analysis showed that a limited
number of components explained a major proportion of
the total variation, with traits such as number of
spikelets per panicle, grain yield per plant, biological
yield, harvest index, panicle length and number of
grains per panicle contributing most to genetic
divergence. Correlation analysis confirmed the
importance of biomass production and assimilate
partitioning in determining grain yield. Cluster analysis

grouped the breeding lines into distinct and divergent
clusters, with high-yielding genotypes distributed
separately from popular checks, reflecting their diverse
genetic backgrounds. The identified genetically diverse
and high-performing breeding lines can be effectively
utilized as potential parents in future rice improvement
programs aimed at yield enhancement.
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