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ABSTRACT 

Genetic variability among breeding lines is essential for effective rice improvement. The present study 
evaluated agronomic trait variability among 114 rice genotypes, including five national and global 
checks, using multivariate statistical analysis. The experiment was conducted during the kharif season of 
2021–22 under an alpha lattice design with three replications, and thirteen yield and yield-related traits 
were recorded. Principal component analysis revealed that the first six principal components with 
eigenvalues greater than one explained 69.56% of the total variation among the genotypes. Traits such as 
number of spikelets per panicle, grain yield per plant, biological yield, harvest index, panicle length and 
number of grains per panicle contributed substantially to genetic variation. Correlation analysis showed 
positive associations of grain yield with biological yield, harvest index and number of grains per panicle. 
Cluster analysis based on Euclidean distance grouped the breeding lines into distinct clusters, indicating 
the presence of considerable genetic divergence. The study highlights the usefulness of multivariate 
approaches in identifying diverse and promising rice breeding lines for yield improvement. 
Keywords : Rice breeding lines; Agronomic traits; Genetic diversity; Principal component analysis; 
Cluster analysis 

  

 

Introduction 

Rice (Oryza sativa L.) is a primary staple food for 
an enormous percentage of the global population 
(Sapna et al., 2024). The continuing rise in population 
has put significant pressure on rice-producing 
processes. At the same time, cultivable land is 
shrinking while climatic variability is expanding 
(Sabar et al., 2024). These concerns urge the 
establishment of high-yielding and stable rice cultivars 
with superior agronomic performance (Haggag et al., 
2015). 

The availability of genetic variety in breeding 
material is a key factor in crop development (Swarup et 

al., 2021). The presence of sufficient variability allows 
breeders to select superior genotypes and design 
effective hybridization programs (Sabar et al., 2024). 
Rice yield is a complex trait and is influenced by 
several agronomic characters (Luzikihupi et al., 1998). 
Traits such as plant height, number of tillers, panicle 
length, number of grains per panicle, and grain weight 
collectively determine yield potential. Therefore, the 
evaluation of agronomic traits is essential for 
identifying promising breeding lines for further 
improvement (Shrestha et al., 2021). 

A crucial component of every successful breeding 
effort is the selection of genetically diverse and 
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productive parental lines. In segregating generations, 
genotypes with a high degree of genetic divergence are 
more likely to provide better recombinants (Bose et al., 
2005). Therefore, it is crucial to recognize the degree 
and pattern of diversity among breeding lines. The 
combined impact of several factors on genetic diversity 
cannot be explained by traditional univariate statistical 
approaches, which only offer information on individual 
traits. 

Multivariate statistical techniques offer an 
effective approach to analyze complex datasets 
involving several correlated traits simultaneously 
(Word et al., 1987). Principal component analysis 
(PCA) is a widely used multivariate technique for 
reducing data dimensionality (Salem et al., 2019). It 
helps identify traits that contribute most to total 
variation among genotypes (Hasan et al., 2021). 
Cluster analysis complements PCA by grouping 
genotypes based on their similarity and divergence 
(Evgenidis et al., 2011; Gewers et al., 2021). The 
combined use of these methods enables effective 
characterization of genetic diversity and supports 
informed parental selection in breeding programs 
(Azam et al., 2023). 

The present study aimed to evaluate agronomic 
trait variability among 114 rice breeding lines using 
PCA and cluster analysis. The objectives were to 
identify key traits contributing to genetic variation and 
to select genetically diverse and high-performing 
genotypes for future rice improvement programs. 

MATERIALS AND METHODS 

Experimental site and plant material 

The study was conducted during the kharif season 
of 2021–22 at the Crop Research Station, Masodha, 
Acharya Narendra Deva University of Agriculture and 
Technology, Kumarganj, Ayodhya (U.P.), India, 
involving 114 rice breeding lines, including five global 
and national checks (IRR154, IR-64, BPT-5204, IRRI-
148, and IRRI-119). 

Experimental Design & Data Recording 

The experiment was conducted in an Alpha 
Lattice design (ALD) with three replications (Kashif et 

al., 2010). Each genotype was grown in a single plot 
under uniform field conditions. Yield and yield-related 
traits were recorded at crop maturity. These included 
number of spikelets per panicle (NSP), number of 

grains per panicle (NGP), spikelet fertility (%) (SF), 
biological yield per plant (g) (BYP), harvest index (%) 
(HI), 1000-grain weight (g) (TW), and grain yield per 
plant (g) (GYP). Mean values were calculated for each 
genotype before statistical analysis. 

Statistical Analysis 

The pooled mean data were subjected to 
multivariate statistical analysis. All traits were 
standardized to minimize scale effects. 

Principal component analysis (PCA) was performed 
to identify major traits contributing to total variation 
among the rice breeding lines. Principal components 
(PCs) with eigenvalues greater than one were 
considered significant.  

Cluster analysis was carried out using Euclidean 
distance to assess genetic divergence among 
genotypes. Hierarchical clustering was performed 
using the Neighbour-Joining (NJ) method. A 
dendrogram was constructed to depict the grouping 
pattern of the rice breeding lines using PAST v5.3 
software (Hammer et al., 2001). 

All statistical analyses were performed using the 
R statistical software. 

Result and Discussion 

Phenotypic variability in 13 yield-related traits 

across 114 breeding lines 

The boxplot depicts the distribution of 13 agro-
morphological and yield-related traits across 114 rice 
breeding lines, revealing significant phenotypic 
variability for all the traits studied (Figure 1). Wide 
interquartile ranges and the presence of extreme values 
for key yield-attributing traits such as number of NSP, 
NGP, BYP, HI, TW and GYP indicated the existence 
of broad genetic diversity within the 114 lines. Traits 
directly contributing to yield, particularly GYP and 
BYP, showed distinct dispersion, suggesting 
differential assimilate production and partitioning 
efficiency among genotypes. Moderate variability was 
also observed for phenological traits such as Days to 
flowering (DTF), spikelet number (SV), Plant height 
(PH), Panicle length (PL) and flag leaf area (FLA), 
reflecting differences in growth duration. Such wide 
variability is desirable in breeding populations as it 
enhances the scope for effective selection of superior 
genotypes and trait recombination for crop yield 
improvement.
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Fig. 1: Boxplot depicting the distribution of 13 yield related traits across 114 breeding lines. 

 

Correlation among yield and yield-related traits 

Pearson correlation analysis among yield and 
yield-related attributes revealed several significant 
associations highlighting the interrelationships 
governing grain yield in rice (Figure 2). GYP showed 
positive correlations with BYP, HI, NGP and PL 
indicating that genotypes with higher biomass 
production and efficient assimilate partitioning tended 
to exhibit superior yield performance. Positive 
associations between NSP and NGP further emphasize 

the importance of sink size in determining final yield. 
In contrast, SF showed a negative association with 
certain sink-related traits suggesting possible relation 
between spikelet number and fertility under the given 
environmental conditions. These relationships 
collectively indicate that selection for grain yield 
should be based on a combination of traits such as 
biomass accumulation, panicle architecture and grain 
filling efficiency rather than on a single trait. 

 

 
Fig. 2: Pearson Correlation coefficient among the yield and yield related attributes. 

 

Principal component analysis 

PCA reduces the dimensionality of the dataset and 
identifies major sources of variation among the 

breeding lines (Edukondalu et al., 2024). The first six 
PCs had eigenvalues greater than one and together 
explained 69.56% of the total variation, indicating that 
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these components captured most of the information 
present in the original variables. PC1 accounted for 
15.74% of the total variance, followed by PC2 
(14.15%), PC3 (11.83%), PC4 (11.21%), PC5 (8.62%) 
and PC6 (8%) (Table 1). The scree plot showed a 
gradual decline in eigenvalues after PC6, confirming 

the adequacy of the first few PCs in representing 
overall variability (Figure 3). The significant variance 
explained by the initial components reflects the 
polygenic nature of yield and its associated traits and 
justifies the use of PCA for effective discrimination 
among genotypes. 

 
Table 1: Eigenvalue, variance explained and cumulative variance for 13 PCs. 

PC Eigenvalue Variance_Explained Cumulative_Variance 

PC1 2.045871 0.15737 0.15737 

PC2 1.838833 0.14145 0.29882 

PC3 1.53786 0.1183 0.41712 

PC4 1.457815 0.11214 0.52926 

PC5 1.121454 0.08627 0.61553 

PC6 1.040695 0.08005 0.69558 

PC7 0.987848 0.07599 0.77157 

PC8 0.931919 0.07169 0.84325 

PC9 0.82471 0.06344 0.90669 

PC10 0.652121 0.05016 0.95686 

PC11 0.395497 0.03042 0.98728 

PC12 0.146686 0.01128 0.99856 

PC13 0.01869 0.00144 1 

 

 
Fig. 3: Scree plot showing the percentage of variance. 

 
The loading matrix provided insights into the 

contribution of individual traits to each principal 
component. PC1 was predominantly influenced by 
NSP (positive loading) and SF (negative loading) 
indicating that variation in spikelet production and 
fertility played a major role in differentiating 
genotypes along this axis (Table 2). PC2 was strongly 

associated with PH, PL, and GYP suggesting that plant 
architecture and yield performance together 
contributed to variability captured by this component. 
PC3 showed high positive loadings for HI, TW and 
GYP emphasizing the importance of assimilate 
partitioning and grain weight in yield determination. 
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PC4 was linked to BYP and GYP reflecting differences 
in total biomass production. 

The loading plot illustrating the contributions of 
variables to the first two PCs further confirmed that 
yield and yield-related traits such as GYP, BYP, NSP, 
NGP and PL were the major contributors of genetic 
divergence (Figure 4). Traits positioned far from the 

origin (HI, GYP, PL, PH, BYP, NSP, SV and SF) 
contributed more strongly to variability, whereas 
closely clustered (FLA, TW, Productive tillers per 
plant (PTP), DTF and NGP) traits exhibited correlated 
behaviour. This distribution highlights the relevance of 
these key traits in distinguishing among rice breeding 
lines.

 
Table 2: Loading scores for 13 yield and yield-related traits. 

Traits PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 

DTF 0.04 0.08 -0.25 -0.12 0.68 -0.09 -0.15 -0.10 -0.51 0.40 -0.01 0.03 0.03 

SV 0.31 -0.21 -0.07 0.02 -0.04 0.34 0.48 0.37 0.14 0.57 0.14 -0.01 0.01 

PH -0.22 0.41 -0.30 -0.34 -0.04 0.16 0.17 0.11 0.16 0.04 -0.69 -0.03 -0.03 

FLA -0.12 -0.10 0.14 0.15 0.35 -0.51 0.36 0.57 0.00 -0.28 -0.13 0.09 -0.02 

PTP -0.03 0.16 -0.13 0.02 -0.58 -0.23 -0.27 0.46 -0.50 0.19 0.03 0.03 0.02 

PL -0.22 0.48 -0.22 -0.22 0.11 0.20 0.14 0.20 0.04 -0.26 0.67 -0.05 0.01 

NSP 0.57 0.22 0.21 -0.20 0.03 -0.11 0.01 0.06 -0.09 -0.15 -0.06 -0.70 -0.04 

NGP 0.06 -0.02 0.23 -0.04 0.26 0.33 -0.65 0.49 0.29 -0.01 -0.07 0.09 0.00 

SF -0.55 -0.29 -0.18 0.21 0.04 0.02 -0.10 0.07 0.08 0.15 0.03 -0.70 -0.04 

BYP 0.20 0.31 -0.26 0.65 0.06 0.05 -0.05 -0.02 0.07 -0.02 -0.05 0.02 -0.60 

HI -0.30 0.19 0.61 -0.23 -0.02 -0.11 0.06 -0.07 0.00 0.36 0.08 0.02 -0.55 

TW -0.14 -0.04 0.31 0.20 0.03 0.60 0.20 0.05 -0.58 -0.28 -0.17 -0.03 0.00 

GYP -0.10 0.50 0.31 0.44 0.04 -0.06 0.04 -0.07 0.13 0.28 -0.03 -0.05 0.58 

 

 
Fig. 4 : Loading plot illustrating the variables contributions to the first two PCs. 
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The biplot depicting the distribution of 114 rice 
breeding lines along the first two principal components 
revealed clear dispersion of genotypes across the 
multivariate space (Figure 5). This wide distribution 
reflects substantial genetic divergence among the 
breeding lines. Several genotypes were positioned in 
directions associated with favourable yield-attributing 
traits, indicating their potential as superior performers. 
Genotypes located near the vectors of GYP, BYP, HI 
and NGP can be considered promising candidates for 
yield improvement, while those occupying extreme 

positions in opposite quadrants represent genetically 
diverse lines suitable for use as parents in hybridization 
programs. The clear separation among genotypes in the 
biplot validates the effectiveness of PCA in capturing 
underlying variability and proves to be effective in 
simplifying complex multivariate datasets and 
revealing key relationships and variations among traits. 
These insights are particularly significant for rice 
breeding as they enhance the understanding of trait 
interactions and facilitate the efficient identification 
and selection of superior genotypes. 

 

 
Fig. 5: Biplot depicting the distribution of 114 breeding line in the first two PCs. 

 

NJ method-based cluster analysis of 114 breeding 

lines 

Hierarchical cluster analysis based on Euclidean 
distance using phenotypic trait data grouped the 114 
rice breeding lines into distinct and divergent clusters 
(Figure 6). The dendrogram revealed wide genetic 
diversity and differential combinations of yield and 
yield-related traits. The checks were distributed across 
different clusters indicating that they represent diverse 
genetic backgrounds. BPT 5204 and IRRI 154 grouped 
with moderate-yielding, tall to medium-tall genotypes 

with relatively lower grain yield, whereas IRRI 148, 
IRRI 119 and IR64 clustered with high-biomass and 
high-yielding genotypes. High-yielding genotypes such 
as IR17A3003, IR18A1027, IR18A1197, IR18A1156, 
IR17A3050 and IR18A1135 were positioned in distinct 
sub-clusters with BPT 5204 and IRRI 154. The long 
branch lengths separating these superior genotypes 
from low-yielding checks indicated significant genetic 
divergence, suggesting that they possess unique and 
complementary allelic combinations for yield traits.
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Fig. 6: Cluster analysis of 114 rice breeding lines based on Euclidean distance and NJ method. 

 

Conclusion 

The present study revealed substantial phenotypic 
variability among the 114 rice breeding lines including 
5 checks for yield and yield-related traits, indicating 
the availability of useful genetic diversity for selection. 
Principal component analysis showed that a limited 
number of components explained a major proportion of 
the total variation, with traits such as number of 
spikelets per panicle, grain yield per plant, biological 
yield, harvest index, panicle length and number of 
grains per panicle contributing most to genetic 
divergence. Correlation analysis confirmed the 
importance of biomass production and assimilate 
partitioning in determining grain yield. Cluster analysis 

grouped the breeding lines into distinct and divergent 
clusters, with high-yielding genotypes distributed 
separately from popular checks, reflecting their diverse 
genetic backgrounds. The identified genetically diverse 
and high-performing breeding lines can be effectively 
utilized as potential parents in future rice improvement 
programs aimed at yield enhancement. 
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